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E X A M P L E  OF A N  E X A C T  S O L U T I O N  OF T H E  P R O B L E M  OF T H E  D I S T R I B U T I O N  

OF AN I O N I Z E D  I M P U R I T Y  IN T H E  S U R F A C E  R E G I O N  OF A S E M I C O N D U C T O R  

A. A.  Pap in  and A.  P. M a z h i r i n  1 UDC 517.93+537.33 

An exact solution of the nonlinear problem of determining the electrostatic potential and 
the distribution profile of an ionized impurity in the surface region of a semiconductor is 
constructed. 

I n t r o d u c t i o n .  We consider the one-dimensional case of the distribution of an ionized impurity in 
a n-type semiconductor under steady-state conditions in an external electric field. The distribution of the 
electrostatic potential ~ as a function of the x coordinate reckoned from the surface of the semiconductor is 
described by the Poisson equation 

d2~ q- [ g  - n], (1) 
dx 2 ~0 Cs 

where N(x) is the distribution profile of the ionized impurity. The electron density n under conditions close 
to thermodynamic equilibrium is expressed in terms of the electrochemical potential ~0 [1]: 

n = ni exp (fl(q2 - ~0)), fl = q/(kT).  (2) 

Here ni is the density of carriers in the semiconductor itself, q is the electron charge (q = 1.6- 10 -19 C), T is 
the temperature (T = 300 K), k is the Boltzmann constant (k = 1.38.10 -23 J /K) ,  ~0 is the permittivity of 
vacuum (~0 = 8.86- 10 -14  F/cm),  and es is the dielectric constant in the semiconductor (es = 11.8). 

The present formulation takes into account the "tail" of the density distribution of the majority 
charge carriers in the transitional region between the space-charge region and the quasineutral volume of 
the semiconductor [3], which is described by the exponential term in the Poisson equation, and which is 
usually discarded in the approximation of a Schottky barrier [1]. The capacitance C of the space charge, 
normalized over the contact area and dependent on the bias voltage v, was measured in the experiment. The 
concentration of the ionized impurity N and the width w of the depleted region are determined from the well- 
known formulas in terms of C(v) [1]. However, N(w) corresponds to the true impurity distribution N,, = N/no 
[no ---- ni exp (--/3 ~o0)] only for smooth variations of Am, i.e., those satisfying the condition dN,,/dx << Nn/Ld 
(L,t is the Debye length). When the case of sharp gradients of impurity concentration, most often encountered 
in practice, occurs, N differs considerably from Nn. The problem of determining the N(x)  profile in the case 
of large gradients in the concentration of the impurity and with allowance for the majority charge carriers in 
the space-charge region is important in this connection. 

The direct problem of finding the variation of the electrostatic potential with depth for a specified 
concentration distribution of an ionized impurity has been studied in many papers [1-3], where Eq. (1), 
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considered for x > 0, was supplemented by the boundary conditions 
o o  

/ dd~ dX = v, \-~x(dq!'~P) --+ O for x - -*oo  (3) 
0 

(v is a specified parameter) .  
In the present work, we solve the inverse problem of finding the concentration distribution of an ionized 

impurity with depth.  We assume that ,  under quasiequilibrium conditions, the electrochemical potential ~0 
does not depend on depth  and, in addition to (3), the following conditions are satisfied: 

\ dx ] dx = Jo(v),  f ~ dx = z0(v); (4) 
o o 

N(x)  
> 0 ,  ( N ( x ) - n o ) ~ O  for x--*oo,  (5) 

n o  

where do(v) and zo(v) are functions determined from experiment by measuring the volt-faxad characteristics 
of the depleted layer. In addit ion to (5), we assume that  N ( x )  is a two-parameter step function of the type 

N(z) f a, 0 < ~ z < p ,  
no 1, x >~ p,  

where a and p are positive constants to be determined. 
S t a t e m e n t  o f  t h e  P r o b l e m .  We set 

x L2  = 
u = ~ ,  ~ = IL--]' 

In the new variables, conditions (1)-(5) take the form 

2u" = exp (u) N(~),  
n o  

( u , d , N - n o ) . - . * O  for 

u(0 )  = - ~ v  - u0; 

4(0)  -- -# lLIz0  - - z ;  

eoeskT  

2q2ni ' 

du 
U I ~_ ~ .  

~ -~ oo; 

q ~ O .  

(6) 

(7) 

(8) 

(9) 

(1o) 

(11) 
o o  

f u n ~  = - /~ZlLIJ0 J. 
0 

By virtue of (6), the  second derivative u" can have a discontinuity of the first kind. The  first derivative C 
and, hence, the function u(~) itself axe continuous. 

Assuming the  existence of the sought parameters a > 0 and p > 0, we consider Eq. (7) for ~ > p: 
2u" = e u - 1. With  allowance for the first two conditions, from (8) we derive 

u '2 = e" - u - 1 -- goo(u), (12) 

where goo(U) >i 0 for all u E ( - o o ,  oo). Similarly, from the equation 2u" = e" - a for ~ < p we obtain 
u '2 + au - e u = C.  The  constant  C is determined from the condition of continuity of u(~) and u'(~) at the 
point ~ = p: 

For all ~ ~< p, we therefore have 

C = ( a -  l ) u . -  i ,  u . ~ u ( p ) .  

u '2 = e" - au + (a - 1)up - i m g . (u ) .  (13) 

The conditions under which ga(u) is guaranteed to be nonnegative are laid out in Lemma 1. In extracting 
the roots in equalities (12) and (13), the required sign is determined by boundary conditions (9)-(11). The 
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following versions are possible: 

(A) u ' />0 ,  u ( 0 ) < 0 ;  

(B) ~'~<0, ~ ( 0 ) > 0 .  

The case u(0) = 0 leads to a trivial solution. Here and below, therefore, we have u(0) ~ 0. In this paper, we 
consider only version (A), corresponding to depletion of the space-charge region. 

P r o b l e m  A. Let the condition (A) hold. We must determine the continuously differentiable function 
u(~) and the positive parameters a and p satisfying the equations 

u ' = k / ~ u ) ,  ~ />p,  (u,u')---}0 for ~ c ~ ;  

oo 

, u ( 0 )  u 0 < 0 ,  u'(O) -z O, d =J, 
0 

where u0, z, and J are given real parameters. 
The initial data u0, z, and J are assumed to be independent in general. It is convenient to describe 

the structure of the set of values of uo and z for which 9a(u) ~> 0, a > 0, and p > 0 using the parameter 

F(uo, z) = l ( g ~ ( u o )  + uo Z2). (14) 

By virtue of (13) with ~ = 0 and (14), we have 

u0(1 - F) = (a - 1)(Up - uo). (15) 

The case of F = 1 ult imately leads to the equality a = 1 and reduces problem (A) to the form 

- -  , > 0 ,  = u ' ( 0 )  = - z ,  

o o  

f u'2d~ = J, (u,u') ---} O for ~ - * c ~ .  
o 

This problem can be solved when there is certain conformity in the initial data. Below, we assume that F r 1 
(a ~ 1). We can thus represent the unknown parameter up from (15) in the form 

a -  F (16) 
U p  ~ U O - -  

o.--1 

Solvabi l i ty  of  P r o b l e m  (A) .  We shall obtain a solution of problem (A) in quadratures. But first we 

must specify the conditions for nonnegativity of ga(u). 
Because u(~) is monotonic, we have the inequalities 

From these inequalities and (16), we find that a t> F > 1 for F > 1. For all u E [u0,un], therefore, we have 

ga(u) ---- goo(u) + (a -- 1)(up - u) /> 0. 

Since, under the conditions of problem A, we have 

F =  1 - e x p ( u o ) + z  2 > 0 ,  

I 0f 

we assume that F < 1. Then, by analogy with the foregoing, we obtain a ~< F < 1. If a < F and, in addition, 

exp (up) ~< a, (17) 

we have 0 < goo(uo) <~ 9a(u) <~ z 2. Inequality (17) is equivalent to the condition of nonnegativity of the 
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function 

F - a  
w(a) = [u01-~ ----a- + In a, a E (0, F).  

It is easy to see that  for a E (0, F)  we have 

max w(a) = to(a,) = I~01- s(,), 

where 

(18) 

1 / 1 
a , = l + ~ r / - - V T / + ~ 7 / 2  , a , E ( O , F ) ,  S ( r ) = r + l n ( 1 T r ) ,  

r -- ~ + + > 0, ~ -- I~01(1 - F )  = g ~ ( u 0 )  - z 2 > 0 

Since the function S(y)  increases monotonically for y/> 0, the equation 

lu01 = s ( y )  (19) 

has a unique solution y.([u0[) for each finite u0 ~ 0. For F < 1, therefore, we can always indicate values of u0 
and z for which max w(a) > 0. For these values of the initial data, the function (18) has two zeroes, a ~ and 
a ~ with 0 < al ~ < a.  < a ~ < F .  The function g=(u)is thus positive for all a E (a~ ~ and u E [uo,up]. 

L e m m a  1. Let uo < 0 and z < 0 be initial data of problem A. 
1. I f  F = 1, then  a = 1 a n d  .q=(u) --  9 ~ ( u )  > / 0 .  

2. If  F > 1, then a >>. F and g~(u) >i O. 
3. I f  F < 1 and goo(uo) - z 2 < y, / (1 +y,2) [y, is a root of Eq. (19)], then 0 < a ~ < a < a ~ < f and 

g=(u) > o, where a o ana a~ ~re root~ of the equation 

F - a  
lu011 _ - -  ~ + Inn -- 0. (20) 

With allowance for this lemma, the proof that problem A is solvable employs the following scheme. Let 
u0, z, and J be given. By calculating values of F,  we determine the set of values of the unknown parameter 
a and the parameter  up. The function ga(u) is definite and nonnegative in this set. Using the inequalities 

~- ~(~) E [~o, o] 1 eU~ < U2(~), 

for all possible values of a except for a = F ,  we have 

1 u 2 z 2. 0 < ~e ~ <~ goo(up) <~ ga(u) <~ (21) 

By virtue of (21), the  solution of the problem 

0 < ~ < p, ~(o) = u0 (22) 

,,(0 
K(u(~),a,  uo,z) - ] g~'l/2(s) (Is = ~. (23) 

uO 

can be represented in the form 

From this, using the condition u(p) = up, we have 

p :  K(up,  a, uo, z), u(~) =O(~ ,a ,  uo, z), ~ e [O,p], (24) 

where U(~, a, u0, z) is a function inverse to K(u(~), a, uo, z). Similarly, for ~/> p, the solution of the problem 

+,' = ~ - ~ ,  u(p)  = up (25) 
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has the form 

Ko~(~(~), a, ~o, z) - 

For all ~/> O, we thus have 

and, hence, the functional 

,,(~) 
/ g:o ' /2 (~)  d~ 

Up 

= ~ - p ,  u(~) = Uoo(~,a,~0, z) 

~ (~)=U(~ ,a ,~0 ,  z), ? = ?(a, uo,~), (26) 

Y /"' fl"-' N = u '2 d~ = d~ + d~ (27) 

0 

depends on a, uo, and z. Fixing the values of u0 and z and employing the latter condition in the formulation 
of problem A, we arrive at the equation 

N(a) = J. (28) 

Solutions of the latter yield the values of the parameter a being sought. After a is found, the parameter u,0 is 
determined from (16), the parameter p from (24), and the unknown function u(~) from (26). The question of 
the solvability of problem A thus comes down to an analysis of the solvability of Eq. (28). Let us investigate 
the properties of the function N(a). 

Let ul(~), pl, and u2(~), 92 be solutions of problems (22) and (25) that  correspond to the values al 
and a2 of the parameter a. We set fi(~) = ul(~) - u2(~), : = pl - p2, and a = al - a2, and with no loss of 
generality we take ~ < 0. We have 

~0(F - 1) ^ 

~,0 = I~Pl - -  lZP2 = a ' ( a l  - -  1)(a2 -- 1)" (29) 

L e m m a  2. Let al and a2 be arbitrary values of the parameter a that simultaneously satisfy conditions 
2 or 3 of Lemma I. Let al < a2. Then r >t 0 for all ~ >. O, ~ > 0 f o r  F > 1, and f~ < 0 for F < 1. Then 
N(a) of (P8) is a monotonically decreasing function. 

P r o o f .  We consider two variants: F > 1 and F E (0,1). For al > F > 1, from (29) we have a,0 > 0. 
Since we have 9a,(s) - 9,2(s) = a(uo - s), for s > u0 and for ~ E (0, min(pl,p2)] we get a(~) > 0 from (23). 
In this interval we have 

~,(~) ~2(~) 

/ gal/2(s)d..q-=--a / f(s)ds, (30) 

"2(0 =o 

where 

S - -  UO) 

f(s) = 1/2 1/2 1/2 1/2 " 
(ga, (s)+ga2 (s))g~, (s)go 2 (~) 

We take : < 0. Because ui(~) are monotonic over the interval [91, ?2], we have 

~(:i) ~< ~(f) ~< ~(:2), i = I, 2. 

Hence we have 0 < ~p <~ ~(~) ~ ui(?2) - u2(?i) and, in particular, ~(?2) > 0. For all ~ i> p2, therefore, from 
the representation 

~1(~) -2(~) 

?. = / g2/'( )ds = / (3,) 
,,,(,02) ,,(,02) 

497 



we get fi(~) /> 0. If ~ > 0, then in the interval [p2, pl], from the representation 

=l(~) ~2(~) 

"l(P2) U2(P2) 

with allowance for the inequality ga~ (s) > goo(s), as well as the inequality fi(p2) > 0 obtained earlier, we have 

u,(pD ~,(p:2) '~,(p2) 

From this we have fi(~) > 0 for ~ E Lo2,pl]. Using (31) with p2 replaced by pl,  we obtain fi(~) ~> 0 for all 
>t p~. We thus have fi(~) >/0 for all ~ 6 (0, cr in the case of a~ < az. We multiply Eq. (7) by the sufficiently 

smooth function r and integrate the resulting equation over ~ from zero to some R > p. Taking R to 
infinity, with allowance for the boundary values (8)-(11) we obtain the equality 

oo p 

f ( 2 u ' ~ '  + ~ ( :  - 1)) ar + (1 - 
0 0 

For fi(~), from (32) we have 

oo Pl 

f ( 2 e r  + - era) - a  f 
0 

For tb = 1, from (33) we derive 

and, hence, ~ > O. We set 

.)fr = -2u ' (0 )~ (0 ) .  

P2 

= - ( . 2  - 1) f ~ ~ .  
P, 

(32) 

(33) 

r 

f ( e  ' '  - e ~ )  d~ § lalP, = (~2 - 1)p, (34) 
0 

condition fi(O) = O, we have 

Pl oo 

a2)~d~- f(:, -., +:2_ m~- f(:' - I +e ~2 - 1)fi d~. (35) 
P2 Pl 

With allowance for (34) and the 

P2 

N(al)  N(a2) -- - / ( e  'q - al  -l- ea2 

0 

In accordance with the  foregoing, the right side of (35) is positive. Therefore N(a) for F > 1 decreases 
monotonically from NF = N(F)  to Noo = N(ao), where a0 = sup a. 

Let F < 1 and let condition 3 of Lemma 1 be satisfied, i.e., 0 < a ~ < al < a2 < a ~ < F and 
exp (ui) <~ ai. From (29) we get tip < 0. In this case/~ < 0, since 

up 2 UP 1 uP 2 
P P P 

uO UO Up 1 

From (30) we derive fi(~) > 0 for ~ E (0,pl]. For ~ E [pl,p2], with allowance for the inequality fi(pl) > 0, we 
obtain 

~,(~) ~,(p,) ~2(~) ~2(~) 

~,(p,) ~2(p,) ~,(:,) ~,(p,) 

Hence, we have fi(~) > 0 and, in particular, u(P2) > 0. Using (31), we obtain fi(~) > 0 for ~ > 0. By virtue of 
(%,a~).  (35), the function N(a) for F < 1 decreases monotonically over the interval 0 0 
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R e m a r k  1. Let F > 1 and a = F (up = 0). From (25) we get u(() = u'(()  = 0 for ( ~> p. Problems 
(22) and (25) reduce to the problem 

u(0)=uo; 
The solution uF(~) and PF of this problem is given by Eqs. (23) and (24). We have therefore determined the 
functional 

N(a)I~=F --- NF = Jo \-~-z ] d(. (36) 

R e m a r k  2. In equality (32) we set r = u(~) and we use the last condition of problem (A). We 
obtain 

CO p 

-- J u(e u - 1)d~ + (1 - a) ] ud~ = -2(u ' (0)u(0)  + J) .  (37) 
0 0 

For F > 1, the left side of (37) is nonnegative. We arrive at the necessary condition for problem (A) to be 
solvable for F > 1: 

0 < J < -u(0)u ' (0) .  

R e m a r k  3. In formulas (16), (25), and (27) we go to the limit as a --+ oo. We have 

lim up = uo, l i m  g~(up) = goo(u0), l i m  p = 0. (38) 

The last equality is a consequence of Lemma 2 for F > 1 and the inequality 
U p  

p ~< f ( ( a -  1 ) ( u p -  s)) -1D ds = _2 \/lu01Cf- 1). 
a 1 

u0 

It is easy to show tha t  we have 

l i m  p(a - 1) = 2 ( I x [ -  ~ ) .  (39) 

Since p ~ 0, Eq. (22) loses meaning [the limiting value of the function (a - 1)(up - u(~)) and, hence, 
the derivative u'(~) are undefined]. The solution u~(~)  of problem (25) as a --* co is defined, however, and it 
can be represented in the form 

uoo(~) 
= 1 g~l/2(s)ds' uoo(O) = uo. 

uO 

For the limiting value of N from (28), using (38), (39), and the mean value theorem, we obtain 
OO 

Nr162 = lim g = ]g~(uo)d~ .  (40) 
a - . . ~ 0 0  J 

0 

T h e o r e m  1. A unique solution (u(~), a,p) of problem (A) exists if, in addition to the assumptions of 
Lemma 1, the following conditions on the initial data are satisfied: 
if F > 1, then 

if F < 1, then 

Noo < J ~< min(NF, [u0zl); (41) 

N(a ~ < J < N(a~ (42) 

where NF, N~ ,  and N(a) are defined by formulas (27), (36), and (40), and a ~ and a ~ and are roots of Eq. 
(20). 
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Proof. Because the function N(a) is monotonic, conditions (41) and (42) ensure the existence of a 
unique root a* of Eq. (28). From (16) the parameter up is uniquely determined for a* and the parameter t9 
is uniquely determined from (24). For the given a*, up, and p, the function u(~) is uniquely determined from 
formulas (23) and (24). 

A unique solution of problem A thus exists. This result can have great practical importance in the 
determination of the concentration profile of an ionized impurity from the data of C-V measurements on 
metal-semiconductor structures in the case of large depth gradients of the impurity concentration. 
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